646 research outputs found

    Testing the Structure of a Gaussian Graphical Model with Reduced Transmissions in a Distributed Setting

    Full text link
    Testing a covariance matrix following a Gaussian graphical model (GGM) is considered in this paper based on observations made at a set of distributed sensors grouped into clusters. Ordered transmissions are proposed to achieve the same Bayes risk as the optimum centralized energy unconstrained approach but with fewer transmissions and a completely distributed approach. In this approach, we represent the Bayes optimum test statistic as a sum of local test statistics which can be calculated by only utilizing the observations available at one cluster. We select one sensor to be the cluster head (CH) to collect and summarize the observed data in each cluster and intercluster communications are assumed to be inexpensive. The CHs with more informative observations transmit their data to the fusion center (FC) first. By halting before all transmissions have taken place, transmissions can be saved without performance loss. It is shown that this ordering approach can guarantee a lower bound on the average number of transmissions saved for any given GGM and the lower bound can approach approximately half the number of clusters when the minimum eigenvalue of the covariance matrix under the alternative hypothesis in each cluster becomes sufficiently large

    PM wind generator topologies\ud

    Get PDF
    The objective of this paper is to provide a comparison among permanent magnet (PM) wind generators of different topologies. Seven configurations are chosen for the comparison, consisting of both radial-flux and axial-flux machines. The comparison is done at seven power levels ranging from 1 to 200 kW. The basis for the comparison is discussed and implemented in detail in the design procedure. The criteria used for comparison are considered to be critical for the efficient deployment of PM wind generators. The design data are optimized and verified by finite-element analysis and commercial generator test results. For a given application, the results provide an indication of the best-suited machine.\u

    RDC complex executes a dynamic piRNA program during Drosophila spermatogenesis to safeguard male fertility

    Get PDF
    piRNAs are small non-coding RNAs that guide the silencing of transposons and other targets in animal gonads. In Drosophila female germline, many piRNA source loci dubbed "piRNA clusters" lack hallmarks of active genes and exploit an alternative path for transcription, which relies on the Rhino-Deadlock-Cutoff (RDC) complex. It remains to date unknown how piRNA cluster transcription is regulated in the male germline. We found that components of RDC complex are expressed in male germ cells during early spermatogenesis, from germline stem cells (GSCs) to early spermatocytes. RDC is essential for expression of dual-strand piRNA clusters and transposon silencing in testis; however, it is dispensable for expression of Y-linked Suppressor of Stellate piRNAs and therefore Stellate silencing. Despite intact Stellate repression, rhi mutant males exhibited compromised fertility accompanied by germline DNA damage and GSC loss. Thus, piRNA-guided repression is essential for normal spermatogenesis beyond Stellate silencing. While RDC associates with multiple piRNA clusters in GSCs and early spermatogonia, its localization changes in later stages as RDC concentrates on a single X-linked locus, AT-chX. Dynamic RDC localization is paralleled by changes in piRNA cluster expression, indicating that RDC executes a fluid piRNA program during different stages of spermatogenesis

    Sketched Ridgeless Linear Regression: The Role of Downsampling

    Full text link
    Overparametrization often helps improve the generalization performance. This paper presents a dual view of overparametrization suggesting that downsampling may also help generalize. Focusing on the proportional regime mnpm\asymp n \asymp p, where mm represents the sketching size, nn is the sample size, and pp is the feature dimensionality, we investigate two out-of-sample prediction risks of the sketched ridgeless least square estimator. Our findings challenge conventional beliefs by showing that downsampling does not always harm generalization but can actually improve it in certain cases. We identify the optimal sketching size that minimizes out-of-sample prediction risks and demonstrate that the optimally sketched estimator exhibits stabler risk curves, eliminating the peaks of those for the full-sample estimator. To facilitate practical implementation, we propose an empirical procedure to determine the optimal sketching size. Finally, we extend our analysis to cover central limit theorems and misspecified models. Numerical studies strongly support our theory.Comment: Add more numerical experiments and some discussions, relax the Gaussian assumption of coefficient vector to moment condition

    Simulation and pilot plant measurement for CO2 absorption with mixed amines

    Get PDF
    AbstractCO2 solubility in an aqueous tertiary amine solution was measured, and thermodynamic models Kent-Eisenberg and Clegg-Pitzer were used to correlate CO2 solubility. Process simulation was also carried out with these models, and simulation results are compared with pilot plant measurement data. The results show that the mixed amine solution of the tertiary amine with MEA could save regeneration energy about 20% compared with 30% MEA aqueous solution

    Statistical Optimality of Deep Wide Neural Networks

    Full text link
    In this paper, we consider the generalization ability of deep wide feedforward ReLU neural networks defined on a bounded domain XRd\mathcal X \subset \mathbb R^{d}. We first demonstrate that the generalization ability of the neural network can be fully characterized by that of the corresponding deep neural tangent kernel (NTK) regression. We then investigate on the spectral properties of the deep NTK and show that the deep NTK is positive definite on X\mathcal{X} and its eigenvalue decay rate is (d+1)/d(d+1)/d. Thanks to the well established theories in kernel regression, we then conclude that multilayer wide neural networks trained by gradient descent with proper early stopping achieve the minimax rate, provided that the regression function lies in the reproducing kernel Hilbert space (RKHS) associated with the corresponding NTK. Finally, we illustrate that the overfitted multilayer wide neural networks can not generalize well on Sd\mathbb S^{d}. We believe our technical contributions in determining the eigenvalue decay rate of NTK on Rd\mathbb R^{d} might be of independent interests

    Dual Adaptive Transformations for Weakly Supervised Point Cloud Segmentation

    Full text link
    Weakly supervised point cloud segmentation, i.e. semantically segmenting a point cloud with only a few labeled points in the whole 3D scene, is highly desirable due to the heavy burden of collecting abundant dense annotations for the model training. However, existing methods remain challenging to accurately segment 3D point clouds since limited annotated data may lead to insufficient guidance for label propagation to unlabeled data. Considering the smoothness-based methods have achieved promising progress, in this paper, we advocate applying the consistency constraint under various perturbations to effectively regularize unlabeled 3D points. Specifically, we propose a novel DAT (\textbf{D}ual \textbf{A}daptive \textbf{T}ransformations) model for weakly supervised point cloud segmentation, where the dual adaptive transformations are performed via an adversarial strategy at both point-level and region-level, aiming at enforcing the local and structural smoothness constraints on 3D point clouds. We evaluate our proposed DAT model with two popular backbones on the large-scale S3DIS and ScanNet-V2 datasets. Extensive experiments demonstrate that our model can effectively leverage the unlabeled 3D points and achieve significant performance gains on both datasets, setting new state-of-the-art performance for weakly supervised point cloud segmentation.Comment: ECCV 202
    corecore